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Open Quantum Systems with Time-Dependent 
Hamiltonians and Their Linear Response 
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We give a rigorous (Hamiltonian) treatment of a quantum system weakly 
coupled to an infinite free reservoir and subject to an external time- 
dependent driving potential varying on the scale of dissipation. The linear 
response of the system initially in thermal equilibrium is determined and 
compared with the usual expressions of linear response theory. 
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1. I N T R O D U C T I O N  

Linear response theory (l-a> gives a supposedly universal prescription for the 
computation of transport  coefficients in the linear regime (i.e., where the 
fluxes depend linearly on the driving forces). They are expressed in terms 
of time integrals over certain time-dependent equilibrium correlation func- 
tions. However, for a finite, closed system the prescription makes no sense, 
for physically well-understood reasons. For  a classical system the result 
obtained is typically zero, (4~ for a quantum system the correlation functions 
are almost periodic functions of time, and hence, in general, the time integrals 
will not exist. Usually, therefore, one assumes (3> that the time integrals 
should be computed over the correlation functions of the infinitely extended 
system, i.e., one should first take the thermodynamic (infinite-volume) limit 
and then the limit as time goes to infinity. (For some results in this direction 
see Refs. 5 and 6.) An alternative modification is to place the finite system in 
idealized isothermal surroundings. (7~ This should induce sufficient decay of 
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the correlation functions for the time integrals to exist. In the limit of a large 
system the transport coefficients computed in this manner should coincide 
with those obtained from the previous method. 

The goal of the present paper is to give a rigorous Hamiltonian formu- 
lation of the second approach. We consider a quantum system with Hamil- 
tonian H coupled to an infinitely extended ideal Fermi gas and subject to a 
time-dependent driving potential f ( t )A .  We assume a weak coupling to the 
reservoir (at present, this is the only case which can be handled). For obvious 
reasons the driving potential has to vary on the time scale of the dissipation 
processes induced by the reservoir. We start by extending the weak coupling 
theory (8,9~ to time-dependent Hamiltonians. With this tool in hand we 
investigate the linear response of the system initially in thermal equilibrium. 
The result differs somewhat from the naive expectation. The "off-diagonal 
response" (with respect to the time-independent system Hamiltonian H) 
follows instantaneously the driving force, whereas the "diagonal response" 
has the usual form, provided that the Hamiltonian dynamics of the isolated 
system is replaced by a stochastic time evolution given in terms of a quantum 
dynamical semigroup, which is obtained in the weak coupling limit (in the 
interaction picture) with the Hamiltonian H. 

We remark that the case of nonmechanical, time-independent pertur- 
bations (e.g., temperature gradients) is treated in Ref. 10. 

2. DESCRIPTION OF THE MODEL 

We consider a quantum system specified by a finite-dimensional Hilbert 
space ~ and a time-dependent Hamiltonian Ht, where the time dependence 
arises from an external field acting on the system. For technical reasons we 
assume that Ht is a real, analytic function of t. The system is coupled to an 
infinite, quasi-free fermion reservoir with Hilbert space ~,, Hamiltonian F, 
and stationary state f2, so that Ff~ = 0. We take the Hamiltonian of the 
system plus reservoir to be of the form 

lit  ~ = H~h + F +  AHI 

where the interaction term 
N 

is bounded, the ~ being linear, smeared fermion operators on ~- with 
(~f2, ~2)= 0. We assume Q~ and ff~ are self-adjoint without loss of 
generality. 

We consider the time evolution of the system in the weak coupling and 
adiabatic limit A -+ 0 by adapting the methods of Refs. 8 and 9. We define 
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d to be the Banach space of trace class operators on 24 ~ | ~ and do to be 
the Banach space of trace class operators on ~ ,  identifying do as a subspace 
o f d  by the one-one correspondence p~-~ p | v, where v = If2)(f~]. We let 
Po be the partial trace with respect to ~,, so that it is a projection of d onto 
do,  and put P1 = 1 - Po and d l =  P l d .  

After rescaling the time variable by the factor ;~2, we find for the evolu- 
tion equation of a state p on d 

dp/dt = [,/-2Z(t) + A-~AJp (1) 

where 

Z(t)p = - i [ H t  + F, p], Ap = - i [ H , ,  p] 

We observe that Z(t)  commutes with P0 and that if  we define A~j = 
P~APj, then A0o = O. 

Although time-dependent evolution equations are known to be difficult 
to interpret rigorously in some circumstances, m'12) these difficulties do not 
arise in our case because the time dependence arises from a norm-bounded 
real analytic term. We can therefore manipulate with the Born series and 
associated integral equations exactly as in the time-independent case. 

Let VA(t, s) be the propagator  on d associated with (1) and defined for 
0 ~< s ~< t < o% and let Ua(t, s) be the propagator  associated with the 
evolution equation 

dp/dt = [A-zZ(t) + A-iAzz]p 

Then U~(t, s) commutes with Po and its restriction to the subspace do is an 
isometry for all 0 ~< ,~ ~< t < oo. Moreover, 

Va(t, s) = Ua(t, s) + ;~-1 du Ua(t, u)(nol + Alo)Va(u, s) 

I f f ~  do and we define the state of  the system at time t />  0 by 

f~(t) = PoVa(t, O)f 

then a routine manipulation leads to 

t "  t 

fa(t) = Ua(t, O)f + Jo ds Ua(t, s)L(A, t, s)fa(s) (2) 

where the operators L(A, t, s) on do are defined by 

f' 
L(1, t, s) = A-2 du Ua(u, s)-~Aolga(u, s)A~o 

~ 8  

jO 
A -- ~ ( t  - s )  

= dv U~(s + A2v, s)-lAolU~(s + a2v, s)A~o 
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Our analysis of the form offa(t) for small A proceeds in several stages, 
the first of which is given in the following theorem. 

T h e o r e m  1. Suppose that the reservoir two-point functions 

h~j(t) = (ei~td~ie-~Ftq~ f~,  f~) 

all satisfy 

fo ~ Ih~,(t)](1 + < oo dt It[)" 

for some ~ > 0. Then there exist operators L(t)  on M0 depending continu- 
ously on t, such that if ga(t) is the solution of the evolution equation 

d ga(t) = [A-2Z(t) + L(t)]ga(t) (3) 

with initial conditions g~(0) = f ,  then 

lira sup IIg~(t) -fa(t)[[ = 0 (4) 
A ~ O  O~<t~<t 0 

for all 0 ~< to < o~. 

ProoL Since this is only a slight variation upon the corresponding time- 
independent theorems in Refs. 8 and 9, we content ourselves with some brief 
comments. 

We first note that for all v, s >1 0 

lim U~(s + h2v, s) = e z(~>v 
A ~ O  

so that in a formal sense 

lira L(A, t, s) = L(s) (5) 
A--*O 

where 

~0 ~176 
L(s) -= dv e-  Z(s~VAoleZ(S~Mlo (6) 

Second, the evolution equation (3) is equivalent to the integral equation 

t "  t 

ga(t) = Ua(t, O)f + Jo ds Ua(t, s)L(s)ga(s) (7) 

and since both (2) and (7) are of Volterra type, the theorem is obtained as in 
Refs. 8 and 9 by proving that (5) is rigorously valid in a suitable sense. More- 
over, this is achieved exactly as in Refs. 8 and 9, the only difference in the 
problem being that the system Hamiltonian is time-dependent; this, however, 
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does not matter, because only crude norm estimates of operators on the 
system space ~ are used in Refs. 8 and 9. 

It is clear from (6) the L(s) depends continuously on s. �9 

3. THE A D I A B A T I C  L I M I T  

We summarize the essential features of the definition of the functions 
ga(t). The space do is a finite-dimensional Hilbert space for the Hilbert-  
Schmidt norm, and for all t i> 0, Z(t) is the generator of  a one-parameter 
unitary group on do. Moreover, Z(t) is a real, analytic function of t, while 
L(t) is a continuous function of t. Finally, ga(t) is the solution of the differen- 
tial equation 

g/( t )  = [h-2Z(t) + L(t)]g~(t) (8) 

with initial conditions g~(0) = f (We use the prime for the derivative with 
respect to t.) We analyze gA(t) in the adiabatic limit A ~ 0, our method being 
a slight modification of that followed in Refs. 13 and 14. 

By Ref. 15, p. 120, the eigenvalues - ioJ ,( t )  of Z(t)  are analytic and can 
be continued analytically through accidental degeneracies, which occur only 
at a discrete set T of times. Moreover, the spectral projections P~(t), which 
satisfy 

P,(t) = 1, P,(t)Z(t) = Z(t)P,(t) = - ioJ,(t)P,(t) 

are also analytic functions which may be continued through points of T. 
An example in Ref. 15, p. 111, shows that this last property may fail if Z(t) 
is only a C~ of t. 

Lemma 1. I f  we define 

then 

K(t) = - ~ P . ( t ) P . ' ( t )  (9) 

P,(t)K(t)P,(t) = 0 (10) 

and the solution of the differential equation 

W'(t) = K(t)W(t) (11) 

with initial conditions W(0)=  1, consists of unitary operators W(t) 
satisfying 

w(t)P.(o)  = P~(t) w( t )  (12) 
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Proof .  Differentiation of 

P ~ ( t )  2 = P ~ ( t )  = t , . ( t ) *  

leads to 

which implies 

E. B. Davies and H. Spohn 

P . ( t ) e . ' ( t )  + P . ' ( t )P . ( t )  = e . ' ( t )  = P. ' ( t )*  

! 
e . ( t ) P .  ( t ) e . ( t )  = o 

W ( t ) * P , ( t )  W ( t )  = P,(O) 

which leads immediately to (12). �9 

Before stating the next theorem we introduce some notation. If B ( t )  are 
operators on N0, we write 

B( t )  ~ = W ( t ) - l B ( t ) W ( t ) ,  B(t)~ = ~ en(O)B( t )~P. (O)  

Lernma 2. The solution of the differential equation 

Xa'( t )  = )t- 2Z( t )  - Xa(t) (13) 

with initial conditions Xa(0) = 1 is 

Xa(t )  = ~ P,(0) exp[-  ih-2 t , , ( t ) ]  (14) 

where 

f? t~( t )  = ~ . ( s )  ds 

SO 

and hence (10). Moreover. 

K(t )*  = - ~ ,  P~ ' ( t )*P. ( t )*  = - ~ ,  P . ' ( t ) P . ( t )  

n 

= - K ( t )  

and this implies that W ( t )  are unitary. Finally, 

[ w ( t ) , P . ( t ) w ( t ) r  = W(t)*[K(t)*P~'(t)  + ~'. '(t) + e . ( t ) K ( t ) ] W ( t )  

= W ( t ) * [ - P . ' ( t ) P . ( t )  + P . ' ( t )  - P ~ ( t ) P . ' ( t ) ] W ( t )  

= 0  
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Proof. This is an immediate deduction from the formula 

Z(t) ~ = - i ~ P,(O)oJ~(t) []  
n 

T h e o r e m  2. Ifga(t)  is defined by (8), then 

lira sup Hga( t ) -  w(t)Y(t)xa(t)f]l  = 0 (15) 
a ~ O  O ~ t ~ t  o 

for all 0 ~ to < c~, where Y(t) is the solution of 

Y'(t) = L(t)~ Y(t) 

with initial conditions Y(0) = 1. 

ProoL We notice that [Y(t), Xa(t)] = 0, since 

~, ( dt, . . .  dh ~ Pm(O)L(t,)~Pro(O) ... Pm(O)L(tl)~Pro(O) Y(t) 
n = 0  e0~<tz~< "'" <~tn<t m 

and since, by (14), Xa(t) commutes with every term of this sum. If  

ha(t) = X~(t)-i  W(t)-  iga(t) 

then 

ha'(t) = - h- 2Z(t) ~hA(t) + Xa(t)-i  W(t)-  l[h- 2Z(t) + K(t)* + L(t)]ga(t) 

=-h -2Z( t )~h~( t )  + Xa(t)-l[h-2Z(t) ~ + K(t) *~ + L(t)~]Xa(t)ha(t) 

= Xa(t)-l[K(t) *~ + L(t)~]Xa(t)ha(t) 

S O  

fO 
t 

ha(t) = f + ds XA(s)-I[K(s) *- + L(s)~]Xa(s)ha(s) 

and we have to show that ha(t) converges uniformly on [0, to] to the solution 

h(t) = r ( t ) f  

of the integral equation 

h(t) = f + as L(s)~h(s) 

Since these are Volterra integral equations it is sufficient as in Refs. 
8 and 9 to show that the Volterra integral operators ,~a defined on the space 

of continuous functions k: [0, to] -~ do by 

Jo' ( ~ k ) ( t )  = ds {X~(s)-l[K(s)*- + L ( s ) ' l X . ( s )  - L(s)~}/~(s) 
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converge strongly to zero as h --> O. Using (10) and (14), we see that 

( ~ ) ( t )  = ~ dsPm(O)[K(s) *~ +/.(s)-]P.(O) 
me" 0 

x exp[iA- 21~m(s) - iA- 21~(s)]k(s ) 

Density arguments show that it is sufficient to prove that 

f~ iA- 2~,(s)]p(s) lira sup ds exp[iA-2~m(S) - = 0 
A-+O O~t<t 0 

n # m, for all continuously differentiable functions p whose support does 
not contain any point of  the set T of  accidental degeneracies. For  such p 
and n # m 

fo t exp[iA 2/~m(S) -- 2t~,(s)]p(s ) ds iA 

= I - i A  ~ exp[iA-2lZm(S) - 

_p(s)_ 
iA- 2/~(s)] 

.,~(s) - ~ o . ( S ) ) o  

+ -~ ds iA 2 exp[iA-2tZm(S) - iA- /~(s)] ~ !~Wm(S) -- OJ.(S)/ 

= o ( a 2 )  

as required. [ ]  

Note.  The above theorem reduces to the ordinary adiabatic theorem if 
L = 0, and shows that as A --> 0, the entire A dependence ofga(t)  is effectively 
concentrated in the single term Xz(t).  

4. L INEAR RESPONSE T H E O R Y  

Let H be the (time-independent) Hamiltonian of the quantum mechanical 
system under consideration. We assume that the quasi-free fermion re- 
servoir is in thermal equilibrium, i.e., that ~ is a KMS state with respect to 
F at inverse temperature/3, and, furthermore, that the system is well coupled 
to its reservoir, in the sense that {A[[H, A] = 0, [Qr, A] = 0, r = 1,..., N} = 
{C1} and that the Fourier transform ~,j(oJ) of  h~j(t) is strictly positive as a 
matrix for all points ~o in the spectrum of [H, �9 ]. This condition ensures that 
in the weak coupling limit every initial state p of the system approaches the 
canonical equilibrium state PB = e-BZ~/tr e-Bn as t--~ oo. (~~ The system is 
assumed to be in equilibrium. At time t = 0 a mechanical perturbation 
ea(t)A is turned on, where a(t) is a real analytic function with a(0) = 0, 
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e > 0, and A = A* ~ Bo. The response of an observable B to the driving 
potential ea(t)A is defined to be 

Fa(t) = tr[B | 1 Va(t, O) Pe @ v] 

= tr[Bpa(t)], pa(O) = Pa (16) 

where Va(t, 0) and pa(t) are defined as in Section 2, with H~ = H + Ea(t)A. 
The result of the last two sections is 

lira sup IFa(t) - tr[BW(t)Y(t)pa] ] = 0 (17) 
h " + O  O ~ t ~ t  0 

since Xa(t)p a = Pa. We emphasize that this result does not depend upon 
being small. 

The basic assertion of  the linear response theory is that for the behavior 
of the system close to equilibrium it is sufficient to study the response linear 
in the driving potential, i.e., to first order in ~. Therefore, the aim of the 
present section is to investigate tr[BW(t)Y(t)pe] to first order in E. We intro- 
duce explicitly the ~ dependence as an additional argument, e.g., W(t, ~) is 
the solution of (11) with Ht = H + Ea(t)A. Since W(t, 0) = 1, it follows that 
Y(t, 0) is a quantum dynamical semigroup, whose generator we denote by L. 
If  E,(~) are the spectral projections of H + cA (analytically extended through 
the points of accidental degeneracies), E,(0) = En, and if en(e) are the 
corresponding eigenvalues, e,(0) = e, ,  then 

N 

Lp = s ~  ~, (-is~j(w)[Oj*(co)Qi(~o), p] 
cge p ( [H , . ] )  t , i =  1 

+ h,j(w){[Q,(o~)p, Qj*(~o)] + [Q,(co), pQ~*(w)]}) (18) 

h~j is the Fourier transform of h~j, s~j is the Hilbert transform of h~y, and 

Qj(~o) = ~ E,  QjEm 
e m -en=o,) 

Note that L may be different from the operator called L~ in Ref. 8 because of 
accidental degeneracies. 

In the sequel certain invariance properties of the canonical equilibrium 
state of the system are used, which we therefore collect in the following 
lemma. 

Lemma 3. Let 

let 

pa(t, E) = e-aZ~,/tr e -an, (19) 

,) = w(t, ,)z(t,  w(t, ,)-1 

= ~ P,(t, ,)L(t, ,)P,(t, ,) 
n 

(20) 
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and let Ut(s,c) be the unitary group on ~'0 generated by Z(s, ~ ) =  
- i[H + Ea(s)A, �9 ]. Then 

L(s, e)pB(s, e) --- 0 (21) 

Ut(s, e)O~(s, e) -- pe(s, e) (22) 

Let Po(s, ~) be the projection corresponding to the eigenvalue ~o0(s, ~) - 0 
of Z(s,  ~). Then 

Po(s, , ) p l s ,  ~) = p1s,  ,), P1s ,  ,)pB(s, ~) = 0 (23) 

fo rn  # 0. 

Proof. Both (21) and (22) are proved in Ref. 8; and (23) follows from 
the fact that pa(t, E) is an eigenvector of Z(t,  ~) corresponding to the eigen- 
value zero. [ ]  

We observe that 

d W(t, ~) Y(t, ~)f  = K(t, E) W(t, ~) Y(t, e ) f  + W(t, e)L(t, e)~ Y(t, E)f 
dt 

= [K(t, ~) + s Q] W(t, ~)Y(t, ~)f  

with s E) defined in (20). Let FBA(t, ~) = tr[BW(t,  ~)Y(t, E)pB]. Then 

(1/E){tr[BW(t, ~)Y(t, ~)PB] - tr[BpB]} 

(24) 

=jo ds tr{B Y(t - s, 0)(1/~)[K(s, ~) + L(s, ~) - L] W(s, ~) Y(s, E)pa} 

Since W(t, 0) = 1 and Y(t, 0)p~ = p~, the linear response is given by 

f2 F~A(t, O) = ds tr{B Y(t - s, O)[K'(s, 0) + L'(s, O)]p~} 

where the dot denotes the partial derivative with respect to ~. 

(25) 

Theorem 3, The linear response is 

F~( t ,  O) = ds a(t - s)~ tr{[L*B(s)](PA)p~} 

f; - a(t) d~ tr{Be-~n[(1 - P)A]e~npe } 

with B(t)  = Y(t, O)*B = [exp(L*t)]B and PA = Po(t, O)A = ~nE~AE~. 

(26) 
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Proof. From the proof  of Lemma 1 we obtain K(s, e) = ~nP~'(s, e)P,(s, ~). 
Partial differentiation with respect to E yields 

K'(s, 0)p~ = ~ [P~'(s, 0)P.(s, 0) + P.'(s, O)P.'(s, 0)]pB = P;'(s, 0)pB 
n 

where we used Lemma 3 and P,'(s, 0) = 0. A differentiation of (23) implies 
that 

We have 

Therefore 

Po'(S, O)pa + PpB'(s, O) = p;(s, O) 

pB'(s, O) = - a ( s ) f f  da e-~nAe"npa + fla(s)p~ tr[ApB ] (27) 

K'(s, O)pB = -a ' ( s )  da e-~H[(1 - P)A]e~np~ 

By integration by parts, using a(0) = 0, we obtain 

a t  

j ds tr[B(t - s)K'(s, 0)pal 
0 

= -a( t ) fo  B da tr{Be-~n[(1 - P)A]e~npB ) 

+ ds a(s) da tr{[L*B(t - s)]e-~H[(p _ 1)A]e~p~} (28) 

A differentiation of (21) leads, using L(s, 0) -- L and (27), to 

~'(s, 0)0B = - L p ; ( s ,  0) 

=-L(-a(s)ffd~e-~nAe~npe+ fia(s)petr[Apa]} 

= a(s da Le-  ~ A e ~ p e  

since Lpe = 0. Adding (28) and ft o ds tr[B(t - s)L'(s, 0)pA yields (26). [ ]  

Equation (26) describes two effects. Since L* commutes with p,(8~ the 
driving force PA results in a response in PB, which is of the form familiar 
from linear response theory. (1 - P)A produces an instantaneous response 
in (1 - P)B. 

We note a few simple consequences of  Theorem 3. Let a(t) = a for 
0 < to ~< t and interpolate smoothly on [0, to] between 0 and a. [Since a(t) 
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cannot be analytic under these assumptions, Theorem 3 does not apply. 
Nevertheless, we do not want to complicate the argument by choosing an 
approximating sequence of analytic functions.] Then 

lim F~( t ,  O) = lim(afl tr[B(t - to)(PA)p~] - aft tr[B(PA)pB] 

+ ds a(t - s) tr{[L*B(s)](PA)pe} 
t - t  o 

- a da tr{Be-~U[(1 - P)A]e~pB}) (29) 

By assumption L* has no purely imaginary eigenvalues, so tr{[L*B(t)](PA)pe] 
decays exponentially fast. Therefore, the third term goes to zero. Further- 
more, l i m t ~  B(t)  = 1 tr[Bpe ]. Adding all terms in (29), we obtain 

(f: } lira F~a(t, O) = a - d~ tr[Be-~**Ae~pe ] + fi tr[Bp~] tr[Ap~] (30) 
t ~ m  

which is the isothermal static (equilibrium) response. 
For  a periodic perturbation (sin a~t)A we have two contributions. The 

second term in (26) gives a response proportional to sin aJt. The response 
from the first term is 

~ d s  (sin oJt cos oJs - cos oJt oJs)fl sin 

x tr{[L*PB(s)]Ape } - Fl"(t, O) 

Therefore, after some initial time span, Fl"(t, 0) oscillates at the same fre- 
quency ~ with a certain phase shift, i.e., 

lim [Fl"(t, O) - Im X(co)e i~t] = 0 
t-*cO 

with 

X(oJ) = dt e-~tOBa(t) = - tr{[(L* - ico)-~L*PBIApB} (31) 

Here, ~BA(t) = tr{[L*PB(t)]ApB} is the so-called response function obtained 
from an impulsive perturbation a(t) -+ 8(0. It seems natural to define X(o)) 
as the generalized susceptibility (admittance) of the system. Then (31) 
agrees with the standard expression of linear response theory for the sus- 
ceptibility, provided that the Hamiltonian dynamics e*tHBe -*m is replaced 
by [exp(L*t)]PB, corresponding to the time evolution of the open system. 
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